坝体溃坝特点及风险管理论文

摘要:为了适应社会经济发展的要求,国家必须要进行基础工程项目体系的健全,确保水利工程建设方案的优化。该文就坝体溃坝的特点、性质、风险管理等问题进行分析,旨在突破传统的坝体溃坝治理模式,实现新型风险管理模式的应用,提升坝体工作的风险管理效益。

关键词:坝体工程;溃坝;事故发生率;风险管理;优化措施

1关于溃坝特点及存在问题的分析

(1)近些年来,我国的水库溃坝事件层出不穷,这充分暴露了我国大坝建设的质量问题。在大坝的建设及运作时期,是发生溃坝的高峰期。在一系列的坝体溃坝事件中,发现发现中小坝的溃坝状况非常常见。一般来说,大型水坝的设计程序比较复杂,其工作标准比较高,施工质量控制也比较严,正是由于运行管理的严谨性,坝体溃坝现象才比较少出现。为了满足现阶段水坝工作的要求,实现坝体除险加固环节及安全管理环节的开展是必要的,从而避免其出现一系列的溃决状况。

(2)堆石坝及土石坝比较容易出现溃坝状况。这些坝型的整体施工规模比较小,其工程整体造价水平低,施工比较快捷。我国的诸多中小坝都是当地材料坝,这种类型的水坝容易出现施工质量问题。实际上,这种施工不太复杂的水坝工作,对于泄洪能力的要求更高,如果不能解决好泄洪问题,就可能导致坝体的急速溃决状况。在国外的发达国家中,大规模的水利工程建设比较复杂,但是其整体建设体系比较健全,具备比较成熟的建设技术,无论是施工质量管理技术还是风险管理技术都具备比较成熟的技术,通过对定期安全评价及环境评价工作的开展,可以满足大坝质量管理的工作要求.比如美国等发达国家建立了比较完善的大坝风险管理制度,实现了大坝整体管理工作的有效开展。

(3)目前来说,我国大坝工程的风险管理体系是不健全的,有些人员不能针对大坝建设的不确定因素进行有效的认识,也就难以做好细节性的风险管理工作,从而出现一系列的质量管理问题。我国的水利工程结构技术标准体系也是不健全的,针对病险水坝的除险加固体系并不健全,这就容易出现一系列的大坝风险状况,不利于实际大坝质量问题的解决。通过对水利工程维修环节及管理环节的开展,可以降低水利工程的风险性。我国的水利工程风险管理体系依旧不成熟,我国水库工程数量庞大,分布于我国的各个区域,水坝风险管理建设需要进行加强,我国的水坝工作环境,也不利于进行坝体的有效性的风险管理。我国的堤防线路比较长,很多堤防都是历史遗留下来的,质量上存在比较严重的.问题。在大坝风险管理过程中,跨流域调水的规划建设工作比较复杂,我国的水利工程的安全管理依旧面临着诸多问题,需要实现坝体风险管理体系的健全,进行工程风险定级,安全评估监督等工作的开展。在实践工作环境中,我国恰恰欠缺有效的安全监测体系,缺乏完善性的维修计划,难以满足我国现阶段风险管理工作的开展。

2大型水利工程风险管理整体方案的优化

(1)为了满足我国水利工程风险管理工作的要求,必须要进行风险管理方案的优化。做好风险识别工作,进行风险来源的确定,做好风险分类的确定工作,进行主次要风险的识别。针对风险状况做好风险评估及分析工作,进行风险发生频率、大小等的分析,做好相关的风险决策及其管理环节。在实践过程中,需要根据风险类型及大小,进行综合性风险管理工作的开展,从而实现管理风险的控制。综合性的管理工程主要包括工程改建、维修、风险管理等,在这里面非工程措施扮演着重要的地位,其提供的风险预报系统、工程保险制度、风险管理方法都能为实际工程的发展奠定良好的工作环境。这需要实现水利工程风险管理方案的优化,做好泄洪设施、库岸、河岸护坡等的监理、检测工作,保证这些建筑物的良好施工及运行,做好建筑物结构的观测及安全评估工作。目前来说,我国的很多事故风险都是中小风险问题,这些问题的解决,需要进行严格性管理制度的制定,积极做好定期的检查及维修工作,进行绝大数工程风险的减少,做好防御重大工程事故的应急预案工作。从工程风险的分布状况来说,工程的施工期及其运作期,是其事故的主要产生期。产生这些事故的最主要原因是水坝缺乏有效的泄洪能力,坝体的整体施工质量欠缺,存在诸多的工程建设问题。这些问题都需要引起我们的重视,做好工程风险管理实践工作。

(2)在实践过程中,设备问题是导致风险管理问题的重要因素,很多的设备存在老化、故障等问题,这需要进行定期维修计划的制定,做好常见故障的预防工作,从而为工程实践创造良好的客观环境。为了满足现阶段水坝风险管理工作的要求,需要做好水利工程的保险体系的优化工作,为工作人员进行意外损害保险的购买,也要为工程施工、运作进行保险的购买,从而提升水利工程的安全性及整体质量,这需要引起相关人员的重视,实现工程整体施工体系的健全,满足现阶段水利工程工作的要求。从工程特点上来说,水利工程具备复杂性的特点,它的整体施工规模比较大,影响其稳定运作的因素诸多,比如气候变化因素、人类活动因素、运行管理因素,为了满足现阶段工作的开展,必须要进行质量及安全风险管理工作的优化,针对其容易出现的灾难性事故进行解决及预防,满足水利工程的安全运作要求。为了实现上述目的,国家需要进行水利工程风险管理体系的健全,进行安全监测系统的健全及更新,落实好相关的安全评估及风险排查工作,做好水利工程的定期性维护及加固工作,实现工程风险问题的有效控制,进行系统性风险评估方案的制定,针对薄弱工程展开风险控制,保证工程系统风险得到有效性的控制。

3结束语

为了满足现阶段水坝工作的要求,进行坝体风险管理方案的更新是必要的,进行新型风险管理理念的应用,保证相关管理人员风险管理意识的提升。

参考文献:

[1]曹楚生,张丛林.水坝设计和风险分析[J].水力发电,2012,38(1):1-3.

[2]李雷.大坝风险评估与风险管理[M].北京:中国水利水电出版社,2006.

[3]何晓燕,王兆印,黄金池.水库溃坝事故时间分布规律与趋势预测[J].中国水利水电科学研究院学报,2008,6(1):37-43.

[4]程卫帅,陈进,刘丹.洪灾风险评估方法研究综述[J].长江科学院院报,2010,27(9):17-24.

浅论堰塞坝溃坝过程分析及影响因素研究论文

1前言

堰塞湖是在一定地质地貌条件下,由于地震、降雨或火山喷发等原因引起山崩、滑坡或泥石流等自然现象堵截山谷、河谷,造成上游段壅水形成的湖泊。阻塞山谷、河谷的堆积体为堰塞坝。据统计资料显示,在形成后10d便发生溃决的堰塞湖百分比超过50%,2个月内溃决的百分比超过60%,1年内发生溃决者超过90%。堰塞坝拥有如此高的溃坝率,一旦发生溃坝,后果将十分严重。在1933年8月25日,四川叠溪发生7.4级大地震,强烈的地震使岷江两岸山体崩塌形成3座高达100余m的堰塞坝,14d后最下游的1个堰塞坝发生溃决,形成高40m左右的洪水倾斜而下,将河流下游两岸的村庄摧毁。对于堰塞坝溃坝过程的研究主要有3种途径:原型观测、数值模拟和模型试验。数值模拟已经发展了许多成熟的模型,其中模拟溃坝的主要模型有:DAMBRK模型,BEED模型,BREACH模型,LOU模型,HW模型,Cristofano模型,Nogueira模型等。一般堰塞湖溃坝主要由漫顶或渗透管涌引起。漫顶溃坝情况是由于坝体本身没有导流或泄洪设施,水位最终发生漫顶,而坝体内部发生渗流,使坝体本身的强度降低,最终发生溃坝。该种溃坝情况水位高,溃坝洪峰流量大,破坏力极大。因此漫顶溃坝更应该得到重视与研究。

2堰塞坝漫顶模拟实验

2.1实验布置及材料

该实验旨在模拟土石坝漫顶时发生溃坝的情况,收集实验数据用以概括溃口形成过程,分析不同坝高、不同坝后坡度对漫顶溃坝过程的影响。该实验在一矩形水泥河道中进行,实验装置分为供水箱、水槽、泥沙收集池3个部分。供水箱长宽高均为1.0m,通过水泵供水,实验过程中水箱中一直保持满水,水箱下游侧安置最大流量为0.17L/s的LZB-25玻璃转子流量计。水槽段宽高均为0.5m,坡降为5°,水槽下游连接泥沙收集池,上游库区安置水位仪(E1),在坝下游区安装摄像机(C1),拍摄溃口变化过程。此次实验取无黏性沙作为填坝材料,其级配曲线。

2.2实验方案

此次实验设置坝高分别为13cm和15cm,顶长分别为20cm与25cm,上游坝坡1∶1.5,下游坝坡1∶1.5,上游来水量为0.17L/s,实验分为3组,如右侧表所示。

该实验先在水槽内按设计方案堆设坝体,为引导溃口在坝体中部产生,堆设时坝体中部略低。缓慢向水槽中灌水,快达坝顶时,关水静置1h,使坝体上游面与水充分接触。之后打开流量仪,固定流量0.17L/s放水,直到整个溃坝过程完成。整个实验过程,水位仪实时监测坝体上游水位变化,摄像机拍摄溃口变化过程。

2.3溃口变化过程分析

漫顶破坏的一大特点是溯源冲刷破坏,溃口发展过程可分为3个阶段:初始溃口形成阶段、溃口发展阶段和最终稳定阶段。

阶段Ⅰ初始溃口形成阶段。当上游水位上升时,坝体发生渗流现象。当水位达到坝顶高度时,发生漫顶,水流总是向最低点运动,因此水流在坝顶中部成股水流缓慢向前移动,水流产生剪应力作用于过流界面,产生微小的局部破坏,微小颗粒因被水流包裹,相互之间摩擦力大幅度降低,因此水流很容易将其带走,使坝体顶部强度降低。当水流到达坝顶与下游坡面接触位置时,水流在交接处冲刷出一个小缺口,但由于此时水流流量较小,水流的破坏力有限,因此下游坡面未出现大面积的失稳破坏现象。但此时在坝体下游下切作用较强,缺口以喇叭状不断扩大,横向拓宽速度较为缓慢,纵向下切速度较快,因此溃口下切深度增长较快。随着水流的`不断冲刷,由于水体自身的重力及冲蚀作用,水流使下游坡面出现凹槽,形成陡坎冲蚀,流量开始增大。下游坡度越缓,陡坎现象越明显。在水流的持续冲刷作用下,下游坡面的陡坎深度不断增加,同时也在不断拓宽,水流流量逐渐变大,此时下游坡底部分向远端呈扇形扩大。同时,陡坎的上半部分,在纵向深度与横向宽度不断增加的同时,陡坎的轮廓不断扩大,侵蚀向上游扩展,在水流的携带作用下,陡坎靠近上游边缘的边沿细颗粒被冲向下游,一些大粒径颗粒在自身重力作用与水流冲刷作用下掉落,使得陡坎规模进一步扩大。当水流向上冲蚀达到上游坝顶边缘时,坝体顶部形成贯通的凹槽,此时初始溃口形成。

阶段Ⅱ溃口发展阶段。当凹槽贯通时,形成了初始溃口。此时的溃口断面形状大致为矩形。此时溃口流量开始急剧增加,大股水流的涌入也使溃口的下切速度与扩宽速度大幅度增加。由于水流的剪切力作用,溃口横向拓宽的速度明显大于溃口纵向下切的速度,溃口宽度迅速增加。洪峰流量也在该阶段达到最大值。此时,溃口两侧边坡基部的泥沙被大量冲刷带走,使边坡的稳定性进一步降低,为边坡失稳坍塌提供发展空间。根据BREACH模型建立的溃口模型,当溃口的下切深度达到某一临界深度时,边坡大量泥沙被水流带向下游,提供强度保证的大粒径颗粒失去稳定最终使边坡失稳坍塌,溃口形状由矩形转变为梯形。阶段Ⅲ最终稳定阶段。当边坡失稳坍塌后,溃口流量开始减小,当水流减小至一定程度后,不足以维持泥沙的层移运动,泥沙开始贴着底部滚动运动。大粒径颗粒因自身重力过大先停止运动,细颗粒受到阻碍也停止运动。水流与颗粒达到动态平衡。溃口此时稳定最终形状为梯形。

3溃坝流量与影响因素分析

对于溃口的分析,除需确定溃口形状外,溃口流量也是根本任务之一。一般情况下,溃坝的下泄流量可由水库水量动态平衡方程计算:

dV/dt=Qin-Qout(1)

式中

V———库区容量;

Qin———入库流量,包括降雨、径流等;

Qout———出库流量。

在该实验中,不考虑蒸发等因素,水量出库方式主要为渗透和溃口出流,因此可得出:

Qout=Qs+Qb(2)

式中

Qs———渗透出流量;

Qb———溃口出流量。

则式(1)可变为:

Qs+Qb=Qin-dV/dt(3)

在该实验中入库流量Qin概化为恒定的上游来水流量0.17L/s。因水位仪测得上游实时水位变化,因此dV/dt也为已知量。在此,设:

Q*=(Qs+Qb)/Qin(4)

式中Q*为无量纲化的出库流量。

由于在水位达到坝顶高度前,水位持续上升,并未发生异象,因此以水流漫顶后达到坝顶边缘与下游坡面交界处、产生初始溃口时为时间起点,一直到溃口形状稳定,水流与颗粒达到动态平衡时的溃坝流量过程制成图。

通过图3~图5可以看出,3组试验的溃坝流量过程的总体变化趋势是一致的。开始时,流量较小,在很长一段时间内,流量变化不大,之后流量突然增大;达到洪峰流量,该最大流量保持时间较短;之后流量开始减小,最终趋于稳定。在时间起点,溃口还未形成,溃口流量为零,因此Q*在此时应为渗透流量Qs,3组试验渗透流量Qs≈(0.5~0.6)Qin,之后初始溃口形成,并未贯通,流量在一定时间内变化不大,但此时溃口对流量的影响远大于渗流对流量的影响,则Q*≈Qb;溃口贯通后,大量水流涌入溃口,Q*在短时间内达到峰值,为洪峰流量。大量水流在短时间内下泄,流量下降迅速,最终趋于稳定,此时溃口也保持稳定。

通过3组试验流量变化图可以发现:坝体高度与洪峰流量大小成正相关,并且坝体越高,洪峰来临的时间越为延后。因坝体高度越高,上游水位越高,壅水总量越大,因此溃坝后,更多的水量下泄,洪峰流量较大。而坝体的高度越高,水位到达坝顶高度的时间也越长,因此洪峰来临时间相比低坝高工况较为延后;坝体长度越短,洪峰来临的时间越短,持续时间也越短,洪峰流量越大。究其原因,坝体长度越短,漫顶水流到达坝顶边缘与下游坡面交界处的时间越短,能更早地形成陡坎冲刷,形成初始溃口,水流溯源的时间也越短,能更早贯通溃口。相对于坝顶长度较长的坝体,坝顶长度较短的坝体结构强度较低,水流的剪切能力和冲刷能力更强,更容易较快地冲毁坝体。因此,应根据实际情况适当控制坝高,尽可能加大坝长,对上游进行水土保护,尽量减少泥沙入库,保证库区有效库容,防止溃坝发生,尽可能减小溃坝带来的危害。

4结论

堰塞坝具有极高的溃坝几率,溃口的形成与溃口流量是决定溃坝严重程度的重要因素。本文通过模拟溃坝实验得出以下结论:

溃口形成可以概化为3个阶段:K初始溃口形成阶段、L溃口发展阶段和M最终稳定阶段。在初始溃口形成阶段,水流对坝体冲蚀形成初始矩形溃槽,同时,水体的渗流作用也加速了该过程。溃口的纵向加深与横向拓宽同时进行,但纵向下切速度大于横向拓宽速度。水流发生溯源冲蚀,使溃槽贯通;在溃口发展阶段,水流流量快速增大,在短时间内达到洪峰流量,横向拓宽速度更快,此时大量水流不仅冲蚀溃槽底部,也带走大量边坡基部泥沙,当溃口深度超过临界深度,边坡失稳坍塌,溃口形状变为梯形;在最终稳定阶段,水流流量减小,水流与泥沙颗粒达到动态平衡,溃口不再发展。

在其他参数相同的情况下,坝体高度越高,洪峰流量越大,洪峰来临时间越迟;坝体长度越短,洪峰流量越大,持续时间越短,洪峰来临时间越短。因此应根据实际情况控制坝高,对上游进行水土保护,在尽可能降低坝高的情况下保证有效库容,增加坝长,减小溃坝产生的威胁。

浅谈三种堰塞坝溃口发展及最大溃决流量公式拟合论文

引言

堰塞湖主要是地质灾害引发大规模、大方量的山体崩塌、滑坡阻塞河道形成的,具有瞬时形成、机理复杂、物质组成不详、溃决灾害巨大等特点。研究堰塞湖溃决模式及对最大溃决流量的预测将对堰塞湖应急处置、预警、避险等决策提供可靠的技术支持。

为了提高堰塞湖的安全控制水平,减轻或避免堰塞湖溃决损失,国内外学者针对堰塞湖的溃决机理,溃决过程展开了大量的模型实验研究,取得了一系列的重要成果。作者通过对汶川地震所产生的上百座堰塞坝调查发现,堰塞坝根据物质组成大致可分为3类:一类堰塞坝由结构松散、覆盖层深厚的山体垮塌形成,主要为土和碎石构成,例如安县肖家桥堰塞坝、绵竹小岗剑堰塞坝,本文称为均质细坝;二类堰塞坝由松散岩石山体崩塌形成,主要为尺寸相近的块石构成,例如都江堰关门山沟堰塞坝、窑子沟堰塞坝,本文称为均质粗坝;三类堰塞坝由山体顺层滑坡堵塞河道形成,具有明显上细下粗的分层特点,例如北川唐家山堰塞坝、都江堰枷担湾堰塞坝,本文称为分层坝。由于堰塞坝的物质组成是堰塞湖最大溃决流量预测的关键因素之一,开展针对性的堰塞坝漫顶溃决试验研究是非常必要的。

本文针对上述3种坝型分别开展了8次漫顶溃决试验。试验在模型水槽内完成,用摄像机记录了堰塞坝漫顶溃决试验全过程,根据采集溃口宽度、深度和最大溃决流量等实时试验数据,分析3种类型堰塞坝的溃决过程和溃口发展特点,以美国水道试验站公式为基础拟合出3种具有针对性的堰塞坝的最大溃决流量公式,能较好地反映堰塞坝的物质组成对堰塞湖最大溃决流量的影响。

1试验设计

本次试验在水泥浆抹面矩形水槽中进行。水槽宽50cm,高50cm,总长10m,底坡为5%。试验采用长1m,宽0.5m,高1m的水箱供水,通过调节阀门开度大小,结合流量仪控制入库流量。

该试验以关门山堰塞坝为背景,根据模型试验几何相似和重力相似,确定几何比尺λl为1∶460。试验模型坝高17.4cm,宽50cm,顺河向顶宽32.6cm,上游坝坡为1∶2,下游坝坡为1∶3,坝顶处开挖宽10cm,深3cm的矩形导流槽。

模型坝采用无黏性砂石作原材料。为方便叙述,将3种模型坝进行编号。1号代表均质细坝,2号代表均质粗坝,3号代表分层坝。分层坝以上细下粗的形态分层布置,横剖面。堆筑时采取分层施工的方法以保证坝体均匀性和压实度,以每5cm为一层,每堆一次夯实一次,并保证夯击次数一致。

为便于观察溃口形态变化以及溃口流量变化过程,在坝前水库边壁处绘制15cm高刻度线,坝顶处放置50cm长刻度尺。试验还在上、下游布置了3台数码摄像机,从不同角度观察和记录溃坝过程。

2试验结果及分析

2.13种坝型溃口发展以及最终溃口形态

根据试验测量数据,绘制3种坝体溃口随时间的大致变化情况,其中图中数字1~5为溃口时间发展顺序;图5(b)~7(b)为实际拍摄溃口最终稳定形态。由图可发现,3种坝型溃决方式均以下切侵蚀为主,辅以侧向展宽来增加过水断面,最终均形成上宽下窄的稳定溃口形状。

2.1.1均质细坝

均质细坝颗粒级配较小,坝体组成以细沙、小块石为主,其抗剪强度远远低于水流运动的剪切力,所需起动流速较低。1阶段水流漫顶后形成一个较深的下切通道,2~3阶段继续以下切侵蚀为主,辅以两岸的失稳坍塌形成的侧向展宽。4~5阶段溃口流量明显加大,大量的泥沙颗粒混杂在水流中,加速了对两岸颗粒的冲刷直至冲蚀过程结束,最终形成稳定溃口。根据最终测得溃口稳定宽深数据统计计算,1~8组均质细坝最终稳定溃口宽深比平均值为1.76,溃口稳定形状多为窄深二次抛物线形,可观测到底部稀疏小块石。

2.1.2均质粗坝

均质粗坝主要由粗颗粒泥沙和块石组成。试验阶段1水流漫顶后将上表层细颗粒逐渐带走,随着溃口断面粗化越发严重,抗冲性变强,水流下切作用变得困难,过流能力受到限制。2~5阶段溃口流速迅速变大下切溃口并加速两岸掏刷直至上游库容明显减小,坝体稳定。整个溃决过程刚开始发展较为缓慢,中间冲刷过程快速,最终形成稳定溃口。据统计,9~16组均质粗坝宽深比平均值为2.22,溃口形状多为宽浅二次抛物线形,溃口过流处河床面粗化严重。

2.1.3分层坝

分层堰塞坝下部以块石为主,上部以泥沙、土质为主。分层坝上表层颗粒较细,故图7中1~4阶段主要以水流下切作用为主,随着颗粒往下逐渐加粗,下部预置块石难以冲刷,下切困难,5~7阶段主要沿两岸展宽溃口以增大过水断面,此时过流流量迅速增加到最大值,带走大量的细沙和小块石直至上游来水量不足以继续冲刷,最终形成稳定溃口。据统计,17~24组分层坝宽深比平均值为2.30,溃口底部平坦,整个溃口形状趋近宽浅梯形,可观测到底部预置大块石,粗化严重。

2.2最大溃决流量公式拟合

通过对3种不同坝型进行试验研究,发现对于同库容、同入库流量、同几何体所形成的堰塞坝溃口形态、最大溃决流量均有较大差异,本文以美国水道试验站公式为基础,通过实测溃口尺寸数据统计分析,重新定义溃口尺寸与最大溃决流量之间的关系,更加具有针对性,对于不同物质组成坝体溃决洪峰流量的预测有较好的指导作用。

美国水道试验站公式:

Qm=827槡g(BoHobmho)0.28bmh1.5o(1)

式中:Qm为坝址处洪峰流量;Bo为溃坝时坝前水面宽度;g为重力加速度;Ho为坝前水深;bm为溃口宽度;ho为溃口顶上水深。

试验实际所测溃坝最大流量值则是利用库区水量平衡方程推导求得,忽略坝体和坝基渗流量。

Q=(h1-h2)(A1+A2)2(t2-t1)+q(2)

A1=Bh1(3)

A2=Bh2(4)

式中:h1、h2、A1、A2分别对应t1、t2时刻库区水位与水面面积;q为上游来水量;B为坝体宽度。

尽管库区标尺处水位在溃决过程中有波动现象,流量计算中水位取值存在误差,但溃决流量总体趋势不会受到较大影响。故取流量过程线中最大值作为实测最大溃坝流量。

如表2所示,保证公式量纲物理意义,改变公式幂指数,得出3种不同堰塞坝型的溃决最大流量公式。

由式(5),分别设均质细坝、均质粗坝、分层坝的幂指数为n1、n2、n3,则有:

Qm=827槡g(BoHobmho)nibmh1.5o(5)

ni=lg(BoHo/bmho)27Qm8槡gbmh1.5o(6)

式中:i=1,2,3分别代表均质细坝、均质粗坝、分层坝。

利用matlab软件根据表2中所列试验测量参数进行幂指数0.28的重新拟合得出结果:

n1=0.2305

同理得出均质粗坝

n2=0.07;分层坝n2=0.21。

经拟合后的公式所得计算值与实测值吻合良好,误差较小,说明了3种堰塞坝最大溃决流量公式能够较好的`反映试验成果,表明了堰塞坝的物质组成对堰塞湖最大溃决流量的影响,一定程度上提高了堰塞湖最大溃决流量的预测精度,对堰塞湖应急处置、预警、避险等决策提供技术支持。

3结语

通过对3种坝型进行溃决过程和最大溃坝流量试验分析,得出以下结论:

(1)每一种坝型的溃口发展和溃口最终形态有其规律性,水流均以下切、展宽作用扩大过水断面,最终形成上宽下窄的稳定溃口。

(2)均质细坝主要以细颗粒构成,溃决过程以下切侵蚀为主,辅以两岸的失稳坍塌形成的侧向展宽,形成窄深型二次抛物线溃口,本试验拟合出适用于均质细坝的最大溃决流量公式为:

Qm=827槡g(BoHobmho)0.23bmh1.5

(3)均质粗坝主要以粗颗粒构成,溃决过程受下切阻力明显,以扩大过水宽度的溯源冲刷为主,通过快速冲刷拓宽形成宽浅型二次抛物线溃口,本试验拟合出适用于均质粗坝的最大溃决流量公式为:

Qm=827槡g(BoHobmho)0.07bmh1.5

(4)分层坝颗粒上细下粗,溃坝过程先以下切作用为主,直到下切无法继续后溃口改为侧向展宽的方式,形成宽浅梯形溃口,且残余坝体较高。本试验拟合出适合于分层坝的最大溃决流量拟合公式为:

Qm=827槡g(BoHobmho)0.21bmh1.5

简谈堰塞坝及其溃决模拟研究评述论文

1引言

堰塞坝是一类自然作用下产生的堆积物,由地震、台风强降雨和冰碛物融化等诱发山体崩塌、滑坡以及泥石流堵塞河道所形成。在堰塞坝的壅堵作用下,往往会汇集水流形成堰塞湖,对周边区域及下游群众的生命财产安全带来极大的威胁。在极端自然条件下,堰塞坝的形成愈加频繁,如2000年4月9日,西藏易贡滑坡完全堵塞易贡藏布江,形成了长2.5km、宽2.5km、最厚100m、平均厚60m的堰塞体。2008年“5·12”汶川8.0级特大地震发生后,共引发了10000多处崩塌、滑坡、泥石流,形成了256处堰塞湖,其中唐家山堰塞湖库容约为3.14亿m3,既淹没了上游村落,又对下游北川、绵阳等地上百万人口构成了巨大威胁,是地震诱发形成的极高危堰塞湖的典型代表之一。

2堰塞坝的形成与基本特征

堰塞坝的形成涉及土石体从坡面上失稳起动到河道堆积停歇的全过程,决定了堰塞体的物质组成和形态结构特征,与坝址所在区域的地层岩性、地质构造以及发生地震、台风强降雨或冰碛物融化等诱发事件的发生概率关系密切。在一定地质条件下,崩塌、滑坡和泥石流中的土石体具有自身的物质结构,在地震或降雨等外界条件的激励作用下,在坡面上失稳起动直至堵河停歇的过程中,通过复杂的动力学作用塑造出特定的堰塞体组成结构。滑坡是堰塞坝形成的最主要的形式,岸坡向河床方向高速滑动,受到对面岸坡的阻挡后堆积至河床上,形成堰塞坝,随着水流的不断汇集,堰塞湖逐步形成。在常见的地震诱发堰塞坝形成机理方面,研究者从形态、物质组成、分布规律和稳定性等多个角度进行了详细的分析和探讨。该类型堰塞坝的形成条件,主要是位置处于高山峡谷河段,河道两岸或者其中一侧存在较为破碎的基岩或松散堆积体,同时地震需达到6级以上。同时,通过历史资料统计分析,地震震级大于6级后,堰塞湖的数量、规模与烈度值呈正相关。一般情况下,堰塞坝将河道堵死,且坝体由堆积物组成,结构松散,在水量增加后会在短时间内发生漫顶溃决;若堰塞坝未能将河道完全堵死,或存在其他泄流通道,堰塞湖入流与泄流平衡且坝体稳定,则堰塞坝可长期存在。针对堰塞坝的存在时间,国内外学者也进行了充分探讨,认为堰塞坝寿命从几分钟到几千年不等,80%的堰塞坝会在1a内发生溃决,并认为100a以内溃决的堰塞坝均为高危型堰塞坝。

3堰塞坝溃决的模拟

受入湖流量、库容大小、被堵河道几何特征、堰塞体几何形状、堰塞体物质组成和岩土结构等的影响,堰塞湖的溃决过程十分复杂,溃决机理、溃决模式、溃决过程参数呈多样化特征。从已溃决的堰塞坝破坏方式来看,主要有坝顶溢流、渗漏、管涌、余震或人为因素造成的坝体滑坡、失稳等。据统计,堰塞坝溃坝以漫顶溃坝为主,所占比例约为71.6%,如四川省叠溪地震形成的堰塞坝、雅砻江右岸唐古栋滑坡形成的堰塞坝等。研究堰塞坝溃决可采用天然观测资料分析、水槽试验、实体模型试验和数值模拟等方法,但是,由于获取天然观测资料通常需要耗费大量的人力和财力,且堰塞坝的溃决具有较强的不确定性和突发性,现场观测的危险性极大,因此目前大多数情况下采用试验分析和数值模拟的方法开展可冲蚀坝漫顶溃决过程研究。

3.1堰塞坝溃决试验模拟

3.1.1溃坝水槽试验

由于溃坝造成了巨大的人员伤亡及经济损失,因此早在20世纪中期国外一些学者便对漫顶溃坝展开了水槽试验研究。大量学者通过预设溃口以及不同的坝体材料,对溃口的发展变化过程及下泄洪水进行了研究分析,得出了坝体坡面的冲刷以泥沙输移过程为基础、溃口的展宽变化包括侧向侵蚀和垂向侵蚀等结论。

3.1.2溃坝模型试验

(1)漫顶溃坝模型试验。20世纪中期,美国开展了规模较大的模型溃坝试验,得到了不同坝体材料情况下的冲刷速率;奥地利针对堆石坝溃决过程也进行了大量的室内试验研究,最大坝高5.5m,其溃决时间比尺与美国的基本一致,还得出了相同护坡条件下不同坝体坡度与临界水头之间的关系。

(2)管涌溃坝模型试验。管涌是导致堰塞坝溃决的原因之一。堰塞坝坝体管涌发生在坝体内部,较难被及时发现,且难以观测获得相关数据。因此,不断有学者开展关于管涌发展过程的模型试验研究,尝试通过可视化试验来研究管涌形成、发展过程及物理机制。可视化试验多是模拟堤基管涌,该类管涌一般发生在透水性较强的砂土层,砂土层上面是透水性较弱的黏土堤身或黏土层。试验采用透明有机玻璃板代替堤身或黏土层覆盖在砂槽土体表面,可在试验过程中透过有机玻璃板观察砂土层中的管涌现象,通常在上覆有机玻璃板开孔来模拟黏土层表面的薄弱点或直接在土槽下游断面上设置管涌出口。但是,实际管涌发生位置是随机的,与地质情况有关,一般发生在表面薄弱处。国内外相关学者通过大量的试验得到了丰富的成果:管涌侵蚀由管涌口逐渐向上游发展,深度在其向上游发展的过程中基本保持不变,截面为宽浅型的倒梯形,边壁的明显冲刷扩张发生在管涌通道贯穿上下游之后;通过多种土样的管涌试验还发现,虽然管涌通道的宽度随着通道的延伸而增大,但是通道尖端的尺寸始终保持不变。

3.2堰塞坝溃决数值模拟

坝体的溃决过程受入库流量、库容、坝体形状和坝体材料特性等多方面因素的影响,按照溃决物理机制来划分,堰塞坝溃决模型有统计模型、参数模型和物理机理模型。本文主要介绍基于参数的数值模拟和基于物理过程的数值模拟。基于参数的模型是建立在统计分析溃坝历史资料基础上得到的统计模型,已有的相关模型中主要采用坝体高度、库容总量、溃决时库内水位与溃口高差、溃决时库内水量等作为特征参数,建立最终溃口宽度、溃决时间和洪峰流量的模型表达式。但是,由于堰塞坝溃决案例的历史实测资料稀少且通常难以获得,因此统计资料的选用具有较强的主观性,导致该类统计模型的计算结果往往存在极大的不准确性。同时,该类模型只能计算出洪峰流量、溃口最终宽度和峰现时间等离散值,无法得到这些主要参数的时变连续变化值。基于物理过程的数值模拟模型是依据堰塞坝形成与发展机理,从理论角度考虑了水流运动、泥沙输移、边坡稳定性等因素而建立的能预测堰塞坝溃坝过程及下泄洪水过程的模型。CristofanoE.A.最早提出了模拟土石坝漫顶溃决时变过程的数值模型,HarrisG.W.等又在此基础上建立了HW模型。随后,FreadD.L.开发了BREACH模型,该模型采用两种模式计算溃口展宽及形状变化过程:一种模式是假设溃口形状为矩形,发展变化形式同DAMBRK模型;另一种模式是通过坝体材料的特性确定临界滑裂面,当溃口深度超过临界深度时边岸以临界角度发生崩塌。由于这类模型结构简单并且考虑了溃口发展过程,因此被广泛应用于行业软件中。

3.3堰塞坝溃决的三维视景模拟

随着计算机图形学、地理信息系统(GIS)、遥感等技术的快速发展,结合数值模拟的三维视景可视化研究受到越来越多水利专家、学者的青睐。三维视景模拟是虚拟现实的一种表现形式,是结合研究对象通过实时三维图形技术展现出的`逼真的虚拟现实场景,相对实体模型来说更精确、更易实现。堰塞坝溃决洪水三维视景仿真主要通过三维图形实时展示堰塞体溃决后下游河道的洪水运动状态,包括瞬时流量、水位、到达时间以及影响范围等动态因素,可对溃决洪水进行实时预测和分析,从而为决策者制定防洪方案提供准确信息,降低堰塞坝溃决洪水造成的损失。冶运涛等开发了汶川地震灾区堰塞湖溃决洪水淹没过程的三维可视化系统,直观展示了堰塞湖的蓄水过程和洪水演进的三维效果;陈伟利结合唐家山堰塞湖区域航空遥感影像数据及DEM高程数据,验证了该区域的地形构建原理及工作流程,发布后通过仿真引擎VegaPrime初步实现了该区域三维地形仿真系统的构建;钟登华等采用三维溃堤洪水演进数学模型对长距离调水工程进行了溃决洪水演进模拟,在虚拟现实平台上开发了溃决洪水淹没演进的三维情景仿真系统。相关溃决的三维视景模拟可对堤防管理,下游防洪和应急决策提供虚拟可视化情景分析与展示。

3.4堰塞湖除险减灾

按照存在的时间长短,堰塞湖可分为高危型堰塞湖、稳态型堰塞湖和即生即消型堰塞湖三种类型,其中高危型堰塞湖威胁最大,是需要实施除险减灾措施的主要对象。在除险减灾过程中,首先进行堰塞湖溃决致灾风险评价,然后对除险减灾措施进行优化决策。由于溃决机理的复杂性,因此目前对堰塞湖的溃决预报还不成熟,而溃坝洪水的下游演进和淹没范围计算已有较成熟的方法和多种模型。相应地,溃口洪水过程预报的不准确、应急分析时下游河道水沙资料的不完整,大大降低了洪水演进模型的预报精度,导致了洪水淹没分析结果及风险评价结果的显著不确定性。在高危堰塞湖的除险处理方面,主动开挖泄流明渠、降低溃决时坝前水位是控制溃决洪水的一种有效方法,成功应用于西藏易贡堰塞湖和“5·12”汶川特大地震形成的唐家山堰塞湖、肖家桥堰塞湖的工程除险。但是,泄流明渠的开挖时机、开挖程度、开挖位置等都与除险目标(控制后的溃决洪水过程)直接相关,目前尚缺少优化方法的研究。

4需要重点研究的若干关键问题

(1)堰塞体形成过程中的土石料堆积分选机制。堰塞体结构和物质组成是堰塞体破坏溃决过程模拟和预报的基本岩土参数。但是,由于堰塞湖形成突然、进入现场难度大、难以及时直接获知堰塞体内部结构和物质组成,因此需要研究建立快速判别堰塞体结构和物质组成的方法。土石料堆积分选机制作为松散土石体运动过程中的内在力学机制,将是堰塞体物质结构和组成与源区失稳土石体的物质结构和组成之间的内在联系。可以通过土石料堆积分选机制的研究,将堰塞体结构和物质组成的判别与源区失稳土石体的特征识别联系起来。

(2)强非恒定流、非均匀流下的输沙理论。现有泥沙输移理论基本上是在恒定均匀流条件下建立的,且强烈依赖于理论检验的输沙资料。堰塞体溃决过程中水流和边界发生复杂变化,具有强非恒定、非均匀特点,与溃口变形直接相关的泥沙输移还没有相应条件下的理论模型(包括启动、推移质运动、悬移质运动等不同内容)。同时,堰塞体松散土石料的输移资料基本无历史观测资料,现有输沙理论外延应用的误差大。因此,亟需研究松散土石料的泥沙输移特征并建立溃决水流条件下的输沙理论模型。

(3)多机理耦合的溃口发展模型。堰塞体溃决过程中包含复杂的水土耦合作用。除了典型的水力冲刷和重力坍塌以外,还存在沿流向的冲决破坏(滑动、倾覆或挠曲破坏)。只有合理考虑这些力学机理的作用,才可能建立起可靠的溃决模型。现有机理模型由于在机理描述上存在不足,因此尚不能模拟从初始破坏至溃口稳定的溃决全过程,如初始渗透变形所致的坝顶坍塌、溃口发展的溃决过程。另一方面,天然堰塞体通常显著厚于人工土石坝,溃口发展在时间上和沿程上都极不均匀,现有经验模型和参数模型都难以应用。

(4)大尺度堰塞坝溃决实体模型试验。目前专门针对堰塞坝的溃决过程实体模型试验或大尺度试验研究较少,尤其是在符合模型相似律的实体模型试验研究方面。已有的水槽试验研究中只局限于少数影响因素的分析,缺乏对漫顶溃决过程影响因素的系统性试验分析研究。因此,有必要开展符合模型相似律的实体模型试验,分析研究可冲蚀坝漫顶溃决机制及下泄流量变化过程。

(5)如何降低除险减灾策略制定中的不确定性。堰塞湖的处置通常具有显著的应急特征,堰塞湖、堰塞体及下游易受灾地区的信息一般并不完整。为了提高除险减灾措施的可靠性,通常需要通过不同方法进行对比决策。相应地,在堰塞湖入流预报、溃决过程预报和下游洪水演进、淹没预报等环节中,基础资料的误差、预报方法的差异和误差等都具有强烈的不确定性,从而对除险减灾策略的制定及实际实施效果产生重要影响。在这种不确定性的实际条件下,需要估计不同环节的不确定性大小和环节之间的传递过程,从而寻求降低不确定性的有效方法,提高除险减灾决策的可靠性、科学性。